Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)
Image cr: User:Fropuff 
Knot theory is the branch of topology that studies mathematical knots, which are defined as embeddings of a circle S^{1} in 3dimensional Euclidean space, R^{3}. This is basically equivalent to a conventional knotted string with the ends of the string joined together to prevent it from becoming undone. Two mathematical knots are considered equivalent if one can be transformed into the other via continuous deformations (known as ambient isotopies); these transformations correspond to manipulations of a knotted string that do not involve cutting the string or passing the string through itself.
Knots can be described in various ways, but the most common method is by planar diagrams (known as knot projections or knot diagrams). Given a method of description, a knot will have many descriptions, e.g., many diagrams, representing it. A fundamental problem in knot theory is determining when two descriptions represent the same knot. One way of distinguishing knots is by using a knot invariant, a "quantity" which remains the same even with different descriptions of a knot.
Research in knot theory began with the creation of knot tables and the systematic tabulation of knots. While tabulation remains an important task, today's researchers have a wide variety of backgrounds and goals. Classical knot theory, as initiated by Max Dehn, J. W. Alexander, and others, is primarily concerned with the knot group and invariants from homology theory such as the Alexander polynomial.
The discovery of the Jones polynomial by Vaughan Jones in 1984, and subsequent contributions from Edward Witten, Maxim Kontsevich, and others, revealed deep connections between knot theory and mathematical methods in statistical mechanics and quantum field theory. A plethora of knot invariants have been invented since then, utilizing sophisticated tools as quantum groups and Floer homology. (Full article...)
View all selected articles 
Algebra  Arithmetic  Analysis  Complex analysis  Applied mathematics  Calculus  Category theory  Chaos theory  Combinatorics  Dynamical systems  Fractals  Game theory  Geometry  Algebraic geometry  Graph theory  Group theory  Linear algebra  Mathematical logic  Model theory  Multidimensional geometry  Number theory  Numerical analysis  Optimization  Order theory  Probability and statistics  Set theory  Statistics  Topology  Algebraic topology  Trigonometry  Linear programming
Mathematics  History of mathematics  Mathematicians  Awards  Education  Literature  Notation  Organizations  Theorems  Proofs  Unsolved problems
General  Foundations  Number theory  Discrete mathematics 

 
Algebra  Analysis  Geometry and topology  Applied mathematics 
ARTICLE INDEX:  
MATHEMATICIANS: 
The Mathematics WikiProject is the center for mathematicsrelated ing on Wikipedia. Join the discussion on the project's talk page.
Project pages Essays Subprojects Related projects

Things you can do

The following Wikimedia Foundation sister projects provide more on this subject: