10000 (number)

← 9999 10000 10001 →
Cardinalten thousand
Ordinal10000th
(ten thousandth)
Numeral systemdecamillesimal
Factorization24 × 54
Greek numeral
Roman numeralX
Unicode symbol(s)X, ↂ
Greek prefixmyria-
Latin prefixdecamilli-
Binary100111000100002
Ternary1112011013
Quaternary21301004
Quinary3100005
Senary1141446
Octal234208
Duodecimal595412
Hexadecimal271016
Vigesimal150020
Base 367PS36

10,000 (ten thousand) is the natural number following 9,999 and preceding 10,001.

Name[]

Many languages have a specific word for this number: in Ancient Greek it is μύριοι (the etymological root of the word myriad in English), in Aramaic ܪܒܘܬܐ, in Hebrew רבבה [revava], in Chinese 萬/万 (Mandarin wàn, Cantonese maan6, Hokkien bān), in Japanese 万/萬 [man], in Khmer ម៉ឺន [meun], in Korean 만/萬 [man], in Russian тьма [t'ma], in Vietnamese vạn, in Thai หมื่น [meun], in Malayalam പതിനായിരം [patinayiram], and in Malagasy alina.[1] In many of these languages, it often denotes a very large but indefinite number.[2]

The Greek root was used in early versions of the metric system in the form of the decimal prefix myria-.

The number 10000 can also be written 10,000 (UK and US), 10.000 (Europe mainland), 10 000 (transition metric), or 10•000 (with the dot raised to the middle of the zeroes; metric).

In mathematics[]

In science[]

In time[]

In other fields[]

Selected numbers in the range 10001–19999[]

10001 to 10999[]

11000 to 11999[]

12000 to 12999[]

13000 to 13999[]

14000 to 14999[]

15000 to 15999[]

16000 to 16999[]

17000 to 17999[]

18000 to 18999[]

19000 to 19999[]

See also[]

Notes[]

  1. ^ On the basis that it did not then (November 2011) appear in Sloane's On-Line Encyclopedia of Integer Sequences.

References[]

  1. ^ http://malagasyword.org/bins/teny2/alina
  2. ^ http://www.merriam-webster.com/dictionary/myriad (Merriam-Webster's Online Dictionary)
  3. ^ Climate Timeline Information Tool
  4. ^ http://www.infoworld.com/article/04/07/28/HNnasalinux_1.html news
  5. ^ "NASA Project: Columbia". Archived from the original on 2005-04-08. Retrieved 2005-02-15.
  6. ^ Brewster, David (1830). The Edinburgh Encyclopædia. 12. Edinburgh, UK: William Blackwood, John Waugh, John Murray, Baldwin & Cradock, J. M. Richardson. p. 494. Retrieved 2015-10-09.
  7. ^ Brewster, David (1832). The Edinburgh Encyclopaedia. 12 (1st American ed.). Joseph and Edward Parker. Retrieved 2015-10-09.
  8. ^ Dingler, Johann Gottfried (1823). Polytechnisches Journal (in German). 11. Stuttgart, Germany: J.W. Gotta'schen Buchhandlung. Retrieved 2015-10-09.
  9. ^ https://www.gutenberg.org/etext/926 : Ten Thousand Dreams Interpreted
  10. ^ a b "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  11. ^ a b c d e "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  12. ^ "Sloane's A003261 : Woodall numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  13. ^ a b c "Sloane's A000931 : Padovan sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-11.
  14. ^ a b c d e f g h "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  15. ^ a b c "Sloane's A083577 : Prime star numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  16. ^ a b c d e f g h "Sloane's A000330 : Square pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  17. ^ a b c d e f g "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  18. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab "Sloane's A006037 : Weird numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  19. ^ a b "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  20. ^ a b "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  21. ^ a b c d e f "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  22. ^ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  23. ^ "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  24. ^ a b "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  25. ^ a b "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  26. ^ Revelation 7:4-8
  27. ^ "Sloane's A000682 : Semimeanders". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  28. ^ Host: Stephen Fry; Panellists: Alan Davies, Al Murray, Dara Ó Briain and Sandi Toksvig (11 November 2011). "Inland Revenue". QI. Series I. Episode 10. London, England. 19:55 minutes in. BBC. BBC Two.
  29. ^ "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  30. ^ "Sloane's A112643 : Odd and squarefree abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  31. ^ "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  32. ^ "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  33. ^ a b "Sloane's A007597 : Strobogrammatic primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  34. ^ "Sloane's A091516 : Primes of the form 4^n - 2^(n+1) - 1". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  35. ^ a b "Sloane's A076980 : Leyland numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  36. ^ "Sloane's A093069 : a(n) = (2^n + 1)^2 - 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  37. ^ "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  38. ^ "Sloane's A088164 : Wolstenholme primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  39. ^ Higgins, Peter (2008). Number Story: From Counting to Cryptography. New York: Copernicus. p. 61. ISBN 978-1-84800-000-1.
  40. ^ "Sloane's A006886 : Kaprekar numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.
  41. ^ Higgins, ibid.
  42. ^ a b "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-15.

External links[]