# 10,000,000 (number)

10000000
CardinalTen million
Ordinal10000000th
(ten millionth)
Factorization27 · 57
Greek numeral${\displaystyle {\stackrel {\alpha }{\mathrm {M} }}}$
Roman numeralX
Greek prefixhebdo-
Binary1001100010010110100000002
Ternary2002110011021013
Octal461132008
Duodecimal342305412

10,000,000 (ten million) is the natural number following 9,999,999 and preceding 10,000,001.

In scientific notation, it is written as 107.

In South Asia except for Sri Lanka, it is known as the crore.

In Cyrillic numerals, it is known as the vran (вран - raven).

## Selected 8-digit numbers (10,000,001–99,999,999)[]

### 10,000,001 to 19,999,999[]

• 10,000,019 – smallest 8-digit prime number
• 10,001,628 – smallest triangular number with 8 digits and the 4,472nd triangular number
• 10,004,569 = 31632, the smallest 8-digit square
• 10,077,696 = 2163 = 69, the smallest 8-digit cube
• 10,556,001 = 32492 = 574
• 10,609,137Leyland number
• 11,111,111repunit
• 11,316,496 = 33642 = 584
• 11,390,625 = 33752 = 2253 = 156
• 11,405,773 – Leonardo prime
• 11,436,171Keith number[1]
• 11,485,154Markov number
• 11,881,376 = 265
• 11,943,936 = 34562
• 12,117,361 = 34812 = 594
• 12,252,240 – highly composite number, smallest number divisible by all the numbers 1 through 18
• 12,648,430 – hexadecimal C0FFEE, resembling the word "coffee"; used as a placeholder in computer programming, see hexspeak.
• 12,890,625 – 1-automorphic number[2]
• 12,960,000 = 36002 = 604 = (3·4·5)4, Plato's "nuptial number" (Republic VIII; see regular number)
• 12,988,816 – number of different ways of covering an 8-by-8 square with 32 1-by-2 dominoes
• 13,782,649 – Markov number
• 13,845,841 = 37212 = 614
• 14,348,907 = 2433 = 275 = 315
• 14,352,282 – Leyland number
• 14,776,336 = 38442 = 624
• 14,930,352Fibonacci number[3]
• 15,485,863 – 1,000,000th prime number
• 15,752,961 = 39692 = 634
• 15,994,428Pell number[4]
• 16,003,008 = 2523
• 16,609,837 – Markov number
• 16,777,216 = 40962 = 2563 = 644 = 166 = 88 = 412 = 224hexadecimal "million" (0x1000000), number of possible colors in 24/32-bit Truecolor computer graphics
• 16,777,792 – Leyland number
• 16,797,952 – Leyland number
• 16,964,653 – Markov number
• 17,016,602 – index of a prime Woodall number
• 17,210,368 = 285
• 17,650,828 = 11 + 22 + 33 + 44 + 55 + 66 + 77 + 88
• 17,850,625 = 42252 = 654
• 18,199,284Motzkin number[5]
• 18,974,736 = 43562 = 664
• 19,487,171 = 117
• 19,680,277Wedderburn-Etherington number[6]
• 19,987,816 – palindromic in 3 consecutive bases: 41AAA1413, 292429214, 1B4C4B115

### 20,000,000 to 29,999,999[]

• 20,031,170 – Markov number
• 20,151,121 = 44892 = 674
• 20,511,149 = 295
• 21,381,376 = 46242 = 684
• 21,531,778 – Markov number
• 21,621,600colossally abundant number,[7] superior highly composite number[8]
• 22,222,222repdigit
• 22,667,121 = 47612 = 694
• 24,010,000 = 49002 = 704
• 24,137,569 = 49132 = 2893 = 176
• 24,157,817 – Fibonacci number,[3] Markov number
• 24,300,000 = 305
• 24,678,050 – equal to the sum of the eighth powers of its digits
• 24,883,200 – superfactorial of 6
• 25,411,681 = 50412 = 714
• 26,873,856 = 51842 = 724
• 27,644,437Bell number[9]
• 28,398,241 = 53292 = 734
• 28,629,151 = 315
• 29,986,576 = 54762 = 744

### 30,000,000 to 39,999,999[]

• 31,536,000 – standard number of seconds in a non-leap year (omitting leap seconds)
• 31,622,400 – standard number of seconds in a leap year (omitting leap seconds)
• 31,640,625 = 56252 = 754
• 33,333,333 – repdigit
• 33,362,176 = 57762 = 764
• 33,445,755 – Keith number[1]
• 33,550,336 – fifth perfect number[10]
• 33,554,432 = 325 = 225, Leyland number
• 33,555,057 – Leyland number
• 34,012,224 = 58322 = 3243 = 186
• 35,153,041 = 59292 = 774
• 35,831,808 = 127
• 36,614,981alternating factorial[11]
• 37,015,056 = 60842 = 784
• 37,933,056 = 3363
• 38,613,965 – Pell number,[4] Markov number
• 38,950,081 = 62412 = 794
• 39,088,169 – Fibonacci number[3]
• 39,135,393 = 335
• 39,916,800 = 11!
• 39,916,801factorial prime[12]

### 40,000,000 to 49,999,999[]

• 40,353,607 = 3433 = 79
• 40,960,000 = 64002 = 804
• 43,046,721 = 65612 = 814 = 98 = 316
• 43,050,817 – Leyland number
• 43,112,609Mersenne prime exponent
• 43,443,858 – palindromic in 3 consecutive bases: 3C323C315, 296E69216, 1DA2AD117
• 43,484,701 – Markov number
• 44,121,607 – Keith number[1]
• 44,444,444 – repdigit
• 45,136,576 – Leyland number
• 45,212,176 = 67242 = 822
• 45,435,424 = 345
• 46,026,618 – Wedderburn-Etherington number[6]
• 46,656,000 = 3603
• 47,045,881 = 68592 = 3613 = 196
• 47,326,700 – first number of the first consecutive centuries each consisting wholly of composite numbers[13]
• 47,326,800 – first number of the first century with the same prime pattern (in this case, no primes) as the previous century[14]
• 47,458,321 = 68892 = 834
• 48,024,900square triangular number
• 48,828,125 = 511
• 48,928,105 – Markov number
• 48,989,176 – Leyland number
• 49,787,136 = 70562 = 844

### 50,000,000 to 59,999,999[]

• 50,852,019 – Motzkin number[5]
• 52,200,625 = 72252 = 854
• 52,521,875 = 355
• 54,700,816 = 73962 = 864
• 55,555,555 – repdigit
• 57,289,761 = 75692 = 874
• 57,885,161Mersenne prime exponent
• 59,969,536 = 77442 = 884

### 60,000,000 to 69,999,999[]

• 60,466,176 = 77762 = 365 = 610
• 61,466,176 – Leyland number
• 62,742,241 = 79212 = 894
• 62,748,517 = 137
• 63,245,986 – Fibonacci number, Markov number
• 64,000,000 = 80002 = 4003 = 206vigesimal "million" (1 alau in Mayan, 1 poaltzonxiquipilli in Nahuatl)
• 65,610,000 = 81002 = 904
• 66,600,049 - Largest minimal prime in base 10
• 66,666,666 – repdigit
• 67,108,864 = 81922 = 413 = 226
• 67,109,540 – Leyland number
• 67,137,425 – Leyland number
• 68,574,961 = 82812 = 914
• 69,343,957 = 375

### 70,000,000 to 79,999,999[]

• 71,639,296 = 84642 = 924
• 72,546,283 – the smallest prime number preceded and followed by prime gaps of over 100[15]
• 73,939,133 – the largest prime number that can be 'tailed' again and again by removing its last digit to produce only primes
• 74,207,281Mersenne prime exponent
• 74,805,201 = 86492 = 934
• 77,232,917 – Mersenne prime exponent
• 77,777,777 – repdigit
• 78,074,896 = 88362 = 944
• 78,442,645 – Markov number
• 79,235,168 = 385

### 90,000,000 to 99,999,999[]

• 90,224,199 = 395
• 92,236,816 = 96042 = 984
• 93,222,358 – Pell number[4]
• 93,554,688 – 2-automorphic number[17]
• 94,109,401 – square pentagonal number
• 94,418,953 – Markov prime
• 96,059,601 = 98012 = 994
• 99,897,344 = 4643, the largest 8-digit cube
• 99,980,001 = 99992, the largest 8-digit square
• 99,991,011 – largest triangular number with 8 digits and the 14,141st triangular number
• 99,999,989 – greatest prime number with 8 digits[18]
• 99,999,999 – repdigit, Friedman number, believed to be smallest number to be both repdigit and Friedman

## References[]

1. ^ a b c "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
2. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
3. ^ a b c "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
4. ^ a b c "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
5. ^ a b "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
6. ^ a b "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
7. ^ "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
8. ^ "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
9. ^ "Sloane's A000110 : Bell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
10. ^ "Sloane's A000396 : Perfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
11. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
12. ^ "Sloane's A088054 : Factorial primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
13. ^ Sloane, N. J. A. (ed.). "Sequence A181098 (Primefree centuries (i.e., no prime exists between 100*n and 100*n+99))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-30.
14. ^ Sloane, N. J. A. (ed.). "Sequence A219996 (Centuries whose prime pattern is the same as prime pattern in the previous century)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-30.
15. ^ Sloane, N. J. A. (ed.). "Sequence A023188 (Lonely (or isolated) primes: least prime of distance n from nearest prime (n = 1 or even).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-01-27.
16. ^ "Sloane's A011541 : Taxicab, taxi-cab or Hardy-Ramanujan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
17. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
18. ^ "greatest prime number with 8 digits". Wolfram Alpha. Retrieved June 4, 2014.