1,000,000 (number)

← 999999 1000000 1000001 →
Cardinalone million
Ordinal1000000th
(one millionth)
Factorization26 × 56
Greek numeral
Roman numeralM
Binary111101000010010000002
Ternary12122102020013
Senary332333446
Octal36411008
Duodecimal40285412
HexadecimalF424016

One million (1,000,000), or one thousand thousand, is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian millione (milione in modern Italian), from mille, "thousand", plus the augmentative suffix -one.[1]

It is commonly abbreviated in British English as m[2][3][4] (not to be confused with the metric prefix "m", milli, for 10−3), M,[5][6] MM ("thousand thousands", from Latin "Mille"; not to be confused with the Roman numeral MM = 2,000), mm (not to be confused with millimetre), or mn in financial contexts.[7][better source needed]

In scientific notation, it is written as 1×106 or 106.[8] Physical quantities can also be expressed using the SI prefix mega (M), when dealing with SI units; for example, 1 megawatt (1 MW) equals 1,000,000 watts.

The meaning of the word "million" is common to the short scale and long scale numbering systems, unlike the larger numbers, which have different names in the two systems.

The million is sometimes used in the English language as a metaphor for a very large number, as in "Not in a million years" and "You're one in a million", or a hyperbole, as in "I've walked a million miles" and "You've asked a million-dollar question".

1,000,000 is also the square of 1000 and also the cube of 100.

Visualisation of powers of ten from 1 to 1 million

Visualizing one million[]

Even though it is often stressed that counting to precisely a million would be an exceedingly tedious task due to the time and concentration required, there are many ways to bring the number "down to size" in approximate quantities, ignoring irregularities or packing effects.

In Indian English and Pakistani English, it is also expressed as 10 lakh. Lakh is derived from lakṣa for 100,000 in Sanskrit.

One million black dots (pixels) – each tile with white or grey background contains 1000 dots (full image)

Selected 7-digit numbers (1,000,001–9,999,999)[]

1,000,001 to 1,999,999[]

2,000,000 to 2,999,999[]

3,000,000 to 3,999,999[]

4,000,000 to 4,999,999[]

5,000,000 to 5,999,999[]

6,000,000 to 6,999,999[]

7,000,000 to 7,999,999[]

8,000,000 to 8,999,999[]

9,000,000 to 9,999,999[]

See also[]

References[]

  1. ^ "million". Dictionary.com Unabridged. Random House, Inc. Retrieved 4 October 2010.
  2. ^ "m". Oxford Dictionaries. Oxford University Press. Archived from the original on July 6, 2012. Retrieved 2015-06-30.
  3. ^ "figures". The Economist Style Guide (11th ed.). The Economist. 2015. ISBN 9781782830917.
  4. ^ "6.7 Abbreviating 'million' and 'billion'". English Style Guide. A handbook for authors and translators in the European Commission (PDF) (2019 ed.). 26 February 2019. p. 37.
  5. ^ "m". Merriam-Webster. Merriam-Webster Inc. Retrieved 2015-06-30.
  6. ^ "Definition of 'M'". Collins English Dictionary. HarperCollins Publishers. Retrieved 2015-06-30.
  7. ^ Averkamp, Harold. "Q&A: What Does M and MM Stand For?". AccountingCoach.com. AccountingCoach, LLC. Retrieved 25 June 2015.
  8. ^ David Wells (1987). The Penguin Dictionary of Curious and Interesting Numbers. London: Penguin Group. p. 185. 1,000,000 = 106
  9. ^ Sloane, N. J. A. (ed.). "Sequence A059925 (Initial members of two prime quadruples (A007530) with the smallest possible difference of 30.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-01-27.
  10. ^ Tracing the History of the Computer - History of the Floppy Disk
  11. ^ a b "Sloane's A007629 : Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  12. ^ a b c "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  13. ^ Sloane, N. J. A. (ed.). "Sequence A002104 (Logarithmic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  14. ^ Sloane, N. J. A. (ed.). "Sequence A006315 (Numbers n such that n^32 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  15. ^ a b c "Sloane's A000129 : Pell numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  16. ^ Sloane, N. J. A. (ed.). "Sequence A000957". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
  17. ^ Sloane, N. J. A. (ed.). "Sequence A031971". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  18. ^ Collins, Julia (2019). Numbers in Minutes. United Kingdom: Quercus. p. 140. ISBN 978-1635061772.
  19. ^ Sloane, N. J. A. (ed.). "Sequence A143641 (Odd prime-proof numbers not ending in 5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  20. ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  21. ^ a b c d e "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  22. ^ "Sloane's A001110 : Square triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  23. ^ a b "Sloane's A004490 : Colossally abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  24. ^ a b "Sloane's A002201 : Superior highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  25. ^ a b c "Sloane's A001190 : Wedderburn-Etherington numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  26. ^ Sloane, N. J. A. (ed.). "Sequence A000258 (Expansion of e.g.f. exp(exp(exp(x)-1)-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  27. ^ Sloane, N. J. A. (ed.). "Sequence A181098 (Primefree centuries)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-01-27.
  28. ^ Sloane, N. J. A. (ed.). "Sequence A122400 (Number of square (0,1)-matrices without zero rows and with exactly n entries equal to 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  29. ^ Sloane, N. J. A. (ed.). "Sequence A111441 (Numbers k such that the sum of the squares of the first k primes is divisible by k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-02.
  30. ^ Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  31. ^ "Sloane's A094133 : Leyland primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  32. ^ "Wolstenholme primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  33. ^ a b "Sloane's A001006 : Motzkin numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  34. ^ Sloane, N. J. A. (ed.). "Sequence A000112 (Number of partially ordered sets (posets) with n unlabeled elements)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  35. ^ a b "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  36. ^ "Sloane's A000979 : Wagstaff primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  37. ^ a b Sloane, N. J. A. (ed.). "Sequence A003226 (Automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2019-04-06.
  38. ^ "Sloane's A000058 : Sylvester's sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  39. ^ "Sloane's A005165 : Alternating factorials". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  40. ^ Sloane, N. J. A. (ed.). "Sequence A030984 (2-automorphic numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-09-01.
  41. ^ "Sloane's A000110 : Bell or exponential numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  42. ^ Sloane, N. J. A. (ed.). "Sequence A000957". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-06-01.
  43. ^ Sloane, N. J. A. (ed.). "Sequence A005727". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  44. ^ Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  45. ^ "Sloane's A088165 : NSW primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-17.
  46. ^ Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  47. ^ "First pair of primes (p1, p2) that begin centuries of primes having the same prime configuration, ordered by increasing p2. Each configuration is allowed only once". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2022-07-03.
  48. ^ Sloane, N. J. A. (ed.). "Sequence A258275 (Smallest number k > n such that the interval k*100 to k*100+99 has exactly the same prime pattern as the interval n*100 to n*100+99)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.