(Benzylideneacetone)iron tricarbonyl

(Benzylideneacetone)iron tricarbonyl
(benzylideneacetone)iron-tricarbonyl-2D-skeletal.png
(bda)Fe(CO)3-from-xtal-Mercury-3D-bs1.png
Identifiers
  • 38333-35-6 checkY
3D model (JSmol)
ChemSpider
  • InChI=1S/C10H10O.3CO.Fe/c1-9(11)7-8-10-5-3-2-4-6-10;3*1-2;/h2-8H,1H3;;;;/b8-7+;;;;
    Key: BVYZFTVCCNDAIM-YZNHWISSSA-N
  • [Fe].[O+]#[C-].[O+]#[C-].[O+]#[C-].O=C(\C=C\c1ccccc1)C
Properties
C13H10FeO4
Molar mass 286.060
Appearance Red solid
Melting point 88 to 89 °C (190 to 192 °F; 361 to 362 K)
slightly soluble
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references

(Benzylideneacetone)iron tricarbonyl is the organoiron compound with the formula (C6H5CH=CHC(O)CH3)Fe(CO)3. It is a reagent for transferring the Fe(CO)3 unit.[1] This red-colored compound is commonly abbreviated (bda)Fe(CO)3.

Structure and bonding[]

(bda)Fe(CO)3 is an example of a comnplex of an η2-ketone. It is a piano stool complex. The compound is characterized by IR bands at 2065, 2005, and 1985 cm−1 (cyclohexane solution), the three bands being indicative of the low symmetry of the complex, which is chiral.

Synthesis, reactions, related reagents[]

Crystals of (Benzylidenacetone)iron tricarbonyl

It is prepared by the reaction of Fe2(CO)9 with benzylideneacetone.[2]

(bda)Fe(CO)3 reacts with Lewis bases to give adducts without displacement of the bda.[3]

Another popular source of Fe(CO)3 is Fe2(CO)9. Alternatively, Fe(CO)3(cyclooctene)2 is highly reactive, the trade-off being that it is thermally sensitive. Imine derivatives of cinnamaldehyde, e.g. C6H5CH=CHC(H)=NC6H5, also form conveniently reactive Fe(CO)3 adducts, which have been shown to be superior in some ways to (bda)Fe(CO)3.[4]

References[]

  1. ^ Knölker, H.-J. "(η4-Benzylideneacetone)tricarbonyliron" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi:10.1002/047084289X.
  2. ^ Domingos, A. J. P.; Howell, J. A. S.; Johnson, B. F. G.; Lewis, J. (1990). "Reagents for the Synthesis of η-Diene Complexes of Tricarbonnyliron and Tricarbonylruthenium". Inorg. Synth. 28: 52–55. doi:10.1002/9780470132593.ch11.
  3. ^ Howell, J. A. S.; Kola, J. C.; Dixon, D. T.; Burkinshaw, P. M.; Thomas, M. J. (1984). "The kinetics and mechanism of diene exchange in (η4-enone)Fe(CO)2L complexes (L = phosphine, phosphite)". Journal of Organometallic Chemistry. 266: 83–96. doi:10.1016/0022-328X(84)80113-8.
  4. ^ Knölker, H.-J.; Braier, A.; Bröcher, D. J.; Cämmerer, S. Fröhner, W.; Gonser, P.; Hermann, H.; Herzberg, D.; Reddy, K. R.; Rohde, G. “Recent applications of tricarbonyliron-diene complexes to organic synthesis” Pure and Applied Chemistry 2001, Volume 73, pp. 1075–1086. doi:10.1351/pac200173071075

Further reading[]